企业等级: | 普通会员 |
经营模式: | 商业服务 |
所在地区: | 北京 海淀区 |
联系卖家: | 白利 先生 |
手机号码: | 18518079905 |
公司官网: | bjlksj.tz1288.com |
公司地址: | 北京市海淀区安宁庄路26号楼8层802房1号 |
边缘计算的价值
优势一:安全性更高
边缘计算中的数据仅在源数据设备和边缘设备之间交换,不再全部上传至云计算平台,防范了数据泄露的风险。
优势二:低时延
据运营商估算,若业务经由部署在接入点的 MEC 完成处理和转发,则时延有望控制在 1ms 之内;若业务在接入网的中心处理网元上完成处理和转发,智能交通边缘计算系统,则时延约在 2~5ms 之间;即使是经过边缘数据中心内的 MEC 处理,时延也能控制在 10ms 之内,对于时延要求高的场景,智能交通边缘计算,如自动驾驶,边缘计算更靠近数据源,可快速处理数据、实时做出判断,充分保障乘客安全。
优势三:减少带宽成本
边缘计算支持数据本地处理,大流量业务本地卸载可以减轻回传压力,智能交通边缘计算产品,有效降低成本。譬如,一些连接的传感器(例如相机或在引擎中工作的聚合传感器)会产生大量数据,在这些情况下,将所有这些信息发送到云计算中心将花费很长时间和过高的成本,如若采用边缘计算处理,将减少大量带宽成本。
边缘计算的应用
智能制造是边缘计算在物联网中非常典型的应用领域,借助于边缘计算将促进 IT 和 OT 系统的深度融合。工业机器人是实现智能制造的基础,近几年工业机器人在中国市场呈现蓬勃发展的趋势。据统计,2016 年中国市场工业机器人消费总量达 87000 台,接近世界销量的近三分之一,是世界上工业机器人市场。工业机器人的应用领域主要集中在汽车制造、3C 行业、物流、金属加工、塑料和化工等行业,通过机器人完成搬运和上下料、装配和拆卸、焊接等工作环境恶劣、自动化/执行精度和安全程度要求非常高的工作场景。工业机器人需要具备应对复杂的现场环境并结合当前工作流程进行综合分析和判断的能力,以及与其他机器人协作完成复杂工作任务的能力。这些都需要机器人配备智能控制器以执行复杂的计算任务,而对于工厂环境使用几十、上百台机器人的应用场景,智能交通边缘计算设备,如果每台机器人都配备复杂的智能控制器,这将增加机器人的成本。但是如果采用边缘技术,把工业机器人的智能控制器功能集中部署在生产车间的边缘节点,在保证时延的情况下还能实现集中控制,完成机器人之间的联动协同,可以大大降低工业机器人的开发、部署和维护成本。
边缘计算
边缘计算是在高带宽、时间敏感型、物联网集成这个背景下发展起来的技术,“Edge”这个概念的确较早为包括ABB、B&R、Schneider、KUKA这类自动化/机器人厂商所提及,其本意是涵盖那些“贴近用户与数据源的IT资源”。这是属于从传统自动化厂商向IT厂商延伸的一种设计,2016年4月5日Schneider已经号称可以为边缘计算定义了物理基础设施——尽管,主打的还是其“微数据中心”的概念。而其它自动化厂商提及计算,都是表现出与IT融合的一种趋势,并且同时具有边缘与泛在的概念在其中。IT与OT事实上也是在相互渗透的,自动化厂商都已经开始在延伸其产品中的IT能力,包括Bosch、SIEMENS、GE这些大的厂商在信息化、数字化软件平台方面,也包括了像贝加莱、罗克韦尔等都在提供基础的IoT集成、Web技术的融合方面的产品与技术。事实上IT技术也开始在其产品中集成总线接口、HMI功能的产品,以及工业现场传输设备网关、交换机等产品。IoT被视为未来快速成长的一个领域,包括前沿的已经出现了各种基于Internet的技术,高通已经提出了Internet of Everything—可以称为IoX。因此新一个产业格局呼之欲出,边缘计算联盟ECC的边界定义而言,华为其主旨在提供计算平台,包括基础的网络、云、边缘服务器、传输设备与接口标准等,而Intel、ARM则提供为边缘计算的芯片与处理能力保障,信通院则扮演传输协议与系统实现的集成,而沈阳自动化所、软通动力则扮演实际应用的角色。但是,边缘计算/雾计算要落地,尤其是在工业中,“应用”才是较为的问题,所谓的IT与OT的融合,更强调在OT侧的应用,即运营的系统所要实现的目标。