企业等级: | 普通会员 |
经营模式: | 商业服务 |
所在地区: | 北京 海淀区 |
联系卖家: | 白利 先生 |
手机号码: | 18518079905 |
公司官网: | bjlksj.tz1288.com |
公司地址: | 北京市海淀区安宁庄路26号楼8层802房1号 |
边缘计算的优点
增强响应的实时性。万物互联场景下应用对于实时性的要求极高。传统云计算模型下,应用将数据传送到云计算中心,新基建边缘计算设备,再请求数据处理结果,增大了系统延迟。以无人驾驶汽车应用为例,高速行驶的汽车需要毫秒级的反应时间,一旦由于网络问题而加大系统延迟,将会造成严重后果。而边缘计算在靠近数据生产者处做数据处理,不需要通过网络请求云计算中心的响应,大大减少了系统延迟,新基建边缘计算卡,千兆无线技术的普及为网络传输速度提供了保证,这些都使边缘服务比云服务有更强的响应能力。
边缘设备智能化的基本要求
将计算基础架构从数据中心扩展到边缘这一主张,得到了越来越广泛的共识。诸如联邦学习之类的概念,通过共享的预测模型进行协作学习这种方式,新基建边缘计算价格,将标准集中式机器学习(ML)方法从数据中心转移到手机——在将数据存储到云的需求中,消解了对可实现ML能力的要求。5而各种深度神经网络(DNN),每天都在发展、以更好地赋能基于边缘的处理功能。成功地将智能带到边缘设备也带来了与传统的AI不同的商机——例如:个性化购物,基于AI的助手;或在制造设施中进行预测分析。边缘/雾计算的应用,比如:车辆的自动驾驶;需要复杂反馈机制的机器人技术的远程控制;甚至是使用ML、可更好地管理可再生能源的智能电网终端设备;以及在电网中对本地电能使用进行预测分析。对于此类应用,成功实施AI的主要决定因素包括:成本效益低功耗可重构性/灵活性尺寸
边缘计算的本质
自动化事实上是一个以“控制”为。控制是基于“信号”的,而“计算”则是基于数据进行的,更多意义是指“策略”、“规划”,因此,它更多聚焦于在“调度、优化、路径”。就像对的高铁进行调度的系统一样,每增加一个车次减少都会引发调度系统的调整,它是基于时间和节点的运筹与规划问题。边缘计算在工业领域的应用更多是这类“计算”。简单地说,传统自动控制基于信号的控制,而边缘计算则可以理解为“基于信息的控制”。值得注意的是,边缘计算、雾计算虽然说的是低延长,江西新基建边缘计算,但是其50mS、100mS这种周期对于高精度机床、机器人、高速图文印刷系统的100μS这样的“控制任务”而言,仍然是非常大的延迟的,边缘计算所谓的“实时”,从自动化行业的视角来看——很不幸,依然被归在“非实时”的应用里的。