企业等级: | 普通会员 |
经营模式: | 商业服务 |
所在地区: | 北京 海淀区 |
联系卖家: | 白利 先生 |
手机号码: | 18518079905 |
公司官网: | bjlksj.tz1288.com |
公司地址: | 北京市海淀区安宁庄路26号楼8层802房1号 |
边缘计算
边缘计算就如同“哈姆雷特”,不同角度认识不同,这是由于边缘太过于宽泛。
在总体上边缘计算可分为云边缘和物联边缘两大类。
云边缘包括ETSI定义的多接入边缘计算MEC,也包括AWS的Outts平台等等。
物联边缘是边缘计算和IOT场景结合,包括工业边缘计算等等,浙江边缘计算系统,能提供数据分析,AI推理等实现物联到智联。
边缘计算结合5G网络,FPGA边缘计算系统,是行业的数字化和智能化转型的基础设施,也是支撑数字孪生的基础平台。
边缘设备智能化的基本要求
将计算基础架构从数据中心扩展到边缘这一主张,得到了越来越广泛的共识。诸如联邦学习之类的概念,通过共享的预测模型进行协作学习这种方式,将标准集中式机器学习(ML)方法从数据中心转移到手机——在将数据存储到云的需求中,消解了对可实现ML能力的要求。5而各种深度神经网络(DNN),每天都在发展、以更好地赋能基于边缘的处理功能。成功地将智能带到边缘设备也带来了与传统的AI不同的商机——例如:个性化购物,基于AI的助手;或在制造设施中进行预测分析。边缘/雾计算的应用,比如:车辆的自动驾驶;需要复杂反馈机制的机器人技术的远程控制;甚至是使用ML、可更好地管理可再生能源的智能电网终端设备;以及在电网中对本地电能使用进行预测分析。对于此类应用,成功实施AI的主要决定因素包括:成本效益低功耗可重构性/灵活性尺寸
边缘计算的优点
保护隐私数据,提升数据安全性。物联网应用中数据的安全性一直是关键问题,调查显示约有 78% 的用户担心他们的物联网数据在未授权的情况下被第三方使用。云计算模式下所有的数据与应用都在数据中心,用户很难对数据的访问与使用进行细粒度的控制。随着智能家居的普及,许多家庭在屋内安装网络摄像头,智能交通边缘计算系统,如果直接将视频数据上传至云数据中心,视频数据的传输不仅会占用带宽资源,还增加了泄露用户隐私数据的风险。为此,针对现有云计算模型的数据安全问题,边缘计算模型为这类敏感数据提供了较好的隐私保护机制,一方面,用户的源数据在上传至云数据中心之前,智能边缘计算系统,首先利用近数据端的边缘结点直接对数据源进行处理,以实现对一些敏感数据的保护与隔离;另一方面,边缘节点与云数据之间建立功能接口,即边缘节点仅接收来自云计算中心的请求,并将处理的结果反馈给云计算中心。这种方法可以显著地降低隐私泄露的风险。